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Abstract. Quenched disorder in local breaking thresholds within a two-dimensional lattice is studied, using
dilute-crack approximations. Two different failure criteria are compared. Application of classical theory
of strength, instead of fracture mechanics energy balance criterion, yields two times greater critical crack
length, and two times greater amount of damage, in the case of failure threshold distributions without
nonzero lower cutoff. Upper bounds of threshold distributions chosen correspondingly, critical voltages
become similar. Normalized distribution of crack sizes appears to be independent of the applied mesoscopic
failure criterion, as well as of the details of the distribution of the values for the failure threshold.

PACS. 62.20.Mk Fatigue, brittleness, fracture, and cracks

1 Introduction

The effect of the size of a system on the strength of the
system often is logarithmic. The same applies to the size
of the largest crack the system may contain. In the case
of a dilute network of dimensionality d, linear size L, and
void fraction q, the size of the largest void can be de-
duced from the fact that there is only one largest void.
The appearance probability of a row of r vacancies is qr,
and Ldqrmax = 1. Then, the size of the largest void is
rmax = − d ln L

ln q [1,2]. Further, there is a stress concentra-
tion at the tip of the crack, proportional to 1 + krm

max
,

where k and m are constants, and correspondingly, the
size effect on critical stress is

σc(q)
σc(0)

≈ 1
1 + krm

max

=
1

1 − k
(

d ln L
ln q

)m . (1)

Instead of dilution disorder, we are here interested in frac-
ture and damage in disordered systems with continuous
distributions of local failure thresholds. In particular, we
restrict ourselves to quenched disorder in local breaking
thresholds within a two-dimensional square lattice. Such
a lattice, here discussed as an electrical conductivity prob-
lem, is a representation of a sheet material with disorder
on the mesoscopic level – a size scale much greater than
the molecular size, but small in relation to the size of any
piece of material used in technical applications.

We will start our discussion by reviewing different fail-
ure theories. Then, we will apply the classical theory of
strength, as well as the energy balance failure criterion,
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on the mesoscopic level. We will develop dilute-crack ap-
proximations for the critical crack length, critical voltage,
crack appearance probability, crack size distribution, and
damage. Results for the two kinds of failure criteria will
be compared.

2 Alternative failure theories, and energy
balance failure criterion on a mesoscopic level

Ancient constructions manifest knowledge of mankind, re-
garding strength and fracture of structures. Galileo, at
1638, hardly was the first to formulate the concepts of
stress and momentum, as well as the associated scaling
laws. The classical theory of strength thus obviously is of
ancient origin.

The origin of the statistical theory of strength is much
less obvious. Sixteenth century, Leonardo observed the
strength of wires to be inversely proportional to length.
His findings were confronted by Galileo, but later elabo-
rated by Mariotte (1686), who associated the statistical
size effect to the existence of flaws. Finally, Weibull pre-
sented his celebrated semi-empirical weakest-link theory
in 1939 [3].

A completely different approach was presented by
Griffith at 1920 [4]. An ideal elastic-brittle body was con-
sidered as static and thermodynamically reversible. New
crack surface may form only if crack propagation releases
potential energy enough to overcome an energy require-
ment for the creation of the new crack surface. A large
plate with a central through crack of length 2a, having a
potential energy Π and total crack surface energy 2γB2a,
where γ is specific surface energy and B is thickness, the



386 The European Physical Journal B

first law of thermodynamics requires dΠ
d2a + d2γB2a

d2a � 0.
The release rate of potential energy can be computed as
dΠ
d2a = −Bσ2πa

E , where σ is nominal stress, and E is elastic
material constant. The critical value of the potential en-
ergy release rate satisfies the equality

(
dΠ
d2a

)
c
+ d2γB2a

d2a =

2γ− σ2
cπac

E = 0. Thus, the specific surface energy can be es-
timated on the basis of the critical nominal stress, critical
crack length, and elastic constant, or the critical nominal
stress can be predicted on the basis of the specific surface
energy, crack length, and elastic constant.

Within the framework of Linear Elastic Fracture Me-
chanics, the energy release rate as a failure criterion can be
expressed in terms of a stress intensity factor and elastic
stiffness [5]. It is worth noting that the stress intensity fac-
tor — or fracture toughness — describing singular stress
fields in the vicinity of a sharp crack, it does not have any
direct connection to the classical theory of strength, or to
any other argument applying a finite stress or strain level
as a local failure criterion. Rather, it is just another way
to express the energy release rate argument.

Most materials are not ideally elastic-brittle, but they
suffer plastic deformations. The work consumed in such
plastic deformations may be much greater than the surface
energy [6–9]. However, in configurations where the plastic
dissipation is associated with the crack propagation, the
surface energy 2γ can be replaced with the critical value
of the total energy release rate (per thickness unit):

(
dΠ

d2a

)

c

= Gc =
σ2

cπac

E
. (2)

The fracture resistance Gc — or the critical value of the
J-integral — may constitute energy consumed for the cre-
ation of damage within an eventual damage band, in addi-
tion to plastic yielding and surface energy. It may change
as a function of crack advance. However, as a simplifica-
tion, this quantity, also called the Specific Essential Work
of Fracture, can be taken as a property characteristic to
any material.

Thus we have two kinds of failure criteria under dis-
cussion. The classical theory of strength favors the critical
stress. Applying Hooke’s law, it may be equivalently ex-
pressed in terms of critical strain, or the critical amount
of work under the stress-strain–curve, often denoted as
toughness (not to be mixed with Fracture Toughness). On
the other hand, any of the above may be replaced by the
energy balance failure criterion, the critical energy release
rate.

Elements which do not contain sharp cracks or de-
fects can be assumed to follow the classical theory. On
the other hand, elements containing sharp cracks or other
stress-enhancing defects may not be reasonably described
by the locally applied classical theory of strength. A con-
tinuum approximation for the stress field in the vicinity
of a sharp crack yields a singularity, and even if crack tip
curvature radius is limited to the molecular size scale, the
resulting stress at the crack tip becomes very high. Then,
element failure becomes determined by whether or not the
energy balance criterion for fracture becomes fulfilled. In

other words, the brittleness of the mesoscopic elements
determines whether a theory of strength or a theory of
fracture energy balance is more appropriate. Surprisingly,
no statistical treatment conducted so far seems to apply
the energy balance criterion on mesoscopic material ele-
ments.

3 Power-law distributed classical failure
thresholds

Let us study a network of fuses with unit conductance,
with power-law-distributed failure thresholds. Any failure
threshold x is assumed to vary between zero and a maxi-
mum x+, and to have a probability density function

(1 − β)

x1−β
+

x−β , (3)

where β < 1.
Applying the classical theory of strength on the meso-

scopic level, the probability of a fuse to burn at a local
current vl is

p(vl) =

vl∫

0

(1 − β)

v1−β
+

x−βdx =
(

vl

v+

)1−β

. (4)

At the edge of an existing crack of length r, the local
current is

vr = αrv ≈ (
1 + c

√
r
)
v, (5)

where c is a constant, and v is the external voltage applied
per unit length [2,10].

The probability of burning a fuse at the edge of an
existing crack of length r is, in particular in the case of a
long crack,

pr =
(

vr

v+

)1−β

≈
(

c
√

r
v

v+

)1−β

= r
1−β

2

(
c

v

v+

)1−β

.

(6)
The probability of a linear crack of length r + 1 to exist
at any particular site is

Pr+1 = p0p1p2...pr (1 − pr+1)
2
. (7)

The logarithm of Pr can be computed as an integral for
large r. The result is

ln Pr ≈ (1 − β)
(

ln(c
v

v+
) − 1

2
+

1
2

ln r

)
r. (8)

Thus

Pr ≈
(

cv
√

r

v+
√

e

)(1−β)r

=
(

vr

v+
√

e

)(1−β)r

. (9)

Such a crack becomes unstable at critical applied voltage
vc and critical length of the largest crack rmax c, where
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vrmax ≈ vcc
√

rmaxC ≈ v+. Thus the average voltage drop
per unit length at instability is

vc ≈ v+

c
√

rmaxC
. (10)

We find that the treatment agrees with the classical Frac-
ture Mechanics crack length effect on critical nominal
stress. On the other hand, the total number of cracks of
length r is N(r) = L2Pr. Setting this number to unity at
critical nominal stress yields the size of the longest crack
at the onset of instability. It is

rmaxC =
4 ln L

1 − β
. (11)

Now, the critical crack length hardly can be greater than
the linear size of the system. Thus we have to require that

β < 1 − 4 lnL

L
. (12)

Substituting equation (11) into (10) yields the critical
nominal stress (or critical applied voltage)

vc ≈ v+

c

√
1 − β

4 lnL
. (13)

Now, substituting v = vvc and r = rrmaxC into equa-
tion (9) yields the crack existence probability for any rel-
ative crack size at any relative voltage, in relation to the
critical values. The result is

Pr ≈
(

v
√

r√
e

)4r ln L

=
(

v2r

e

)2r lnL

. (14)

It appears that the crack appearance probability, as a
function of relative crack size, relative voltage and system
size, is independent on the upper limit of failure thresh-
old distribution. More remarkably, the crack appearance
probability also is independent of the distribution param-
eter β!

4 Power-law distributed energetic failure
thresholds

Let us still discuss a network of fuses with unit conduc-
tance. In the random fuse network, the quantity analogous
to energy release rate is the differential electrical power
resulting from burning of a fuse. Instead of the breaking
current, the critical value of the power differential is now

the failure criterion for any fuse: gi = −
(∑

k

vk∆vki

)

c

,

where vk is voltage drop over fuse k, and ∆vki is change
in voltage drop over fuse k due to burning of fuse i.

The power differential resulting from burning of a fuse
strongly depends on local geometry. Transmission power
is reduced in fuses adjacent to the burning fuse in the
direction of the main current, but there is a power en-
hancement in fuses laterally adjacent to the burning fuse.

We are roughly approximating the power differential for
the formation of a new single-fuse crack as

∑
k

vk∆vki = −3v2 + 2 (α − 1) v2, (15)

where the first term accounts for differential power within
the burning fuse and two fuses adjacent to it in the direc-
tion of the main current, and the second term for power
enhancement in the two along-current aligned fuses adja-
cent to the burning fuse in the lateral direction. In the
case of a fuse burning at the tip of an existing crack of
length r, we are approximating the power differential as

∑
k

vk∆vki = − (2r + 3) v2 + (αr − 1) v2, (16)

where αr at the limit of large r is given in equation (5).
This being proportional to the square root of n, the latter
term of equation (16) may be neglected at large r.

Now, the probability of a fuse to burn at a local power
differential gl is

p(gl) =

gl∫

0

(1 − β)
g+

x−βdx =
(

gl

g+

)1−β

. (17)

The probability of burning a fuse at the edge of an existing
crack of length r is

pr =
(

gr

g+

)1−β

≈
(

2rv2

g+

)1−β

=
(

2r

g+

)1−β

v2(1−β),

(18)
The logarithm of Pr can be computed as an integral for
large r. The result is

ln Pr ≈ (1 − β) (ln 2 − ln g+ + 2 ln v − 1 + ln r) r. (19)

Thus

Pr ≈
(

2v2r

g+e

)(1−β)r

=
(

gr

g+e

)(1−β)r

. (20)

Such a crack becomes unstable when grmax ≈ 2rmaxCv2
c ≈

g+. Thus the average voltage drop per unit length at in-
stability is

vc ≈
√

g+

2rmaxC
. (21)

Again, the result agrees with classical Fracture Mechanics.
The total number of cracks of length r is N(r) = L2Pr.
Setting this number to unity at critical nominal stress
yields the size of the longest crack at the onset of insta-
bility. It is

rmaxC =
2 lnL

1 − β
. (22)

Interestingly, we find that the critical crack length is ex-
actly half of the critical crack length in the case of meso-
scopically applied classical theory of strength. Now, the
critical crack length hardly can be greater than the linear
size of the system. Thus we have to require that

β < 1 − 2 ln L

L
. (23)
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Fig. 1. Critical crack length in relation to linear system size, as a function of linear system size and failure threshold distribution
parameter, according to the dilute-crack approximation. The distribution parameter β runs from −1 to the vicinity of 1. On
the left, local failure thresholds according to the Classical Theory of Strength. On the right, failure thresholds according to the
Energy Balance Criterion.

Substituting equation (22) into (21) yields the critical
nominal stress (or critical applied voltage)

vc ≈
√

g+ (1 − β)
4 lnL

. (24)

Now, substituting v = vvc and r = rrmaxC into equa-
tion (20) yields the crack existence probability for any
relative crack size at any relative voltage. The result is

Pr ≈
(

v2r

e

)2r ln L

. (25)

Surprisingly, we find that equation (25) equals equa-
tion (14). Thus, the crack appearance probability, as a
function of relative crack size and relative voltage, as
well as system size, is independent of the failure criterion!
Again, the crack appearance probability, as a function of
relative crack size, relative voltage and system size, is in-
dependent of the distribution parameter β.

Figure 1 shows the critical crack length as a function
of the distribution parameter and system size. We find
that once the distribution parameter approaches unity,
the critical crack size approaches system size. The dis-
tribution parameter getting smaller, the critical crack size
vanishes, negative infinity in β corresponding to the ab-
sence of disorder in the failure thresholds. The classical
theory of strength yields critical crack lengths exactly two
times those of the energy balance criterion.

Figure 2 shows the average critical voltage drop as a
function of the distribution parameter and system size.
We find that once the distribution parameter approaches
unity, the critical voltage drop approaches zero. The dis-
tribution parameter getting smaller, the critical crack size
vanishes, negative infinity in β corresponding to the ab-
sence of disorder in the failure thresholds. Equations (13)

Fig. 2. Average critical voltage drop, in relation to linear sys-
tem size, as a function of linear system size and failure thresh-
old distribution parameter, according to the dilute-crack ap-
proximation. The distribution parameter β runs from −1 to
the vicinity of 1.

√
g+ =

v+
c

= 1.

and (24) being based on dilute-crack approximations for
long cracks, their validity ceases with vanishing crack size.
Negative infinity in β accumulates the failure threshold
probability mass in the vicinity of the upper limit of the
distribution, and with vanishing crack size, the critical
voltage drop tends to the upper limit. Results for the two
different kinds of failure criteria are equal to each other,
provided √

g+ = v+
c .
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Fig. 3. Average number of cracks of relative size r within a
lattice of linear size 100, as a function of relative crack size and
relative applied voltage, according to the dilute-crack approxi-
mation. The result is independent of the distribution parameter
β, and equal for both of the applied failure criteria.

We find from equations (14) and (25), that within the
dilute-crack approximation, using a power-law distribu-
tion of the failure thresholds, the probability of a crack of
size r to exist at any site on the lattice Pr is a function of
system size L, relative crack size r = r

rmaxC
and relative

applied voltage v = v
vc

. The average number of cracks of
size r being L2Pr, the number of cracks of relative size r
within a lattice of size 100 is shown in Figure 3. The crack
appearance probability is independent of the distribution
parameter β, and it is the same for both of the applied
failure criteria.

The amount of damage in cracks of relative size r, as
a function of relative crack size and relative applied volt-
age, is achieved from the distribution shown in Figure 3
by multiplying any crack appearance probability by crack
size. The crack size, in turn, can be expressed as the prod-
uct of relative crack size, which appears in Figure 3, and
the critical crack size. The critical crack size does depend
on the applied failure criterion, as well as on the distribu-
tion parameter β, according to equations (11) and (22),
and according to Figure 1. The dependency on the fail-
ure criterion, however, is particularly simple: the critical
crack size in the case of the classical theory of strength is
exactly two times the one resulting from the energy bal-
ance argument. The normalized distribution of crack sizes
being similar, this also means that the extent of damage is
exactly two times greater at any applied relative voltage.

5 Conclusions

An observation rather surprising for the author is that
the normalized distribution of crack sizes, as a function
of the relative voltage, appears to be independent of the
applied mesoscopic failure criterion, as well as the details

of the distribution of the values for the failure threshold
(Fig. 3). It appears that the similarity applies when the
failure threshold distribution extends all the way to zero.
It can be verified numerically that the similarity does not
extend to distributions with a nonzero lower cutoff.

In the case of failure threshold distributions including
zero, the critical crack size is, in the case of the classical
theory of strength, exactly two times the one resulting
from the energy balance argument (Eqs. (11) and (22)).
The normalized distribution of crack sizes being similar,
this also means that the extent of damage is exactly two
times greater at any applied relative voltage. The critical
crack size always is proportional to the logarithm of linear
system size, which interestingly agrees with dilute-system
results [1,2].

The critical applied voltage is proportional to the up-
per bound of the failure threshold distribution (Eqs. (10)
and (21)). Within the classical theory of strength, the crit-
ical applied voltage is inversely proportional to the square
root of the critical crack size, corresponding to the classical
fracture mechanics result (Eq. (10)). Applying the energy
balance criterion, the critical applied voltage is inversely
proportional to the square root of two times the critical
crack size (Eq. (21)). On the other hand, the critical crack
size is two times greater in the case of the classical theory
of strength. Thus, upper bounds of the failure threshold
distributions chosen correspondingly, the critical voltage
is independent of the failure criterion, regardless the dif-
ference in critical crack size, and the corresponding dif-
ference in the extent of damage. Interestingly, considering
that the present analysis has been implemented for large
cracks, the size effect on critical nominal stress agrees with
that of dilatation disorder (Eq. (1)) [1,2].

It would be of interest to generalize the treatment for
a failure criterion x, where the dependency of the local
value of the failure parameter on local crack length r and
applied voltage v is xr = cvγrα.

In the case of an exponential distribution without a
lower nonzero cutoff the probability of a fuse to burn at
local failure parameter value is

p(xr) =

xr∫

0

(1 − β)x−β

x1−β
+

dx =
(

xr

x+

)1−β

=
(

cvγr
α

x+

)1−β

.

(26)
Computing the logarithm of the probability of a linear
crack to exist at any site Pr as an integral reveals

Pr ≈
(

cvγrα

x+eα

)(1−β)r

=
(

c (vvc)
γ (rrc)

α

x+eα

)(1−β)r

. (27)

The critical applied voltage is

vc =
(

x+

crα
c

) 1
γ

. (28)

Considering that there is only one critical crack, its
length is

rc =
2 lnL

α (1 − β)
. (29)
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Thus we find that equation (11) is a special case where
α = 1

2 , and equation (22) is a special case where α = 1.
Substituting equations (28) and (29) into (27) gives

Pr ≈
(

(v)
γ
α r

e

)r ln L

. (30)

Thus we find that in the case of an exponential distri-
bution without nonzero lower cutoff, the crack size dis-
tribution as a function of relative crack size and relative
voltage is independent of the shape of the distribution! On
the other hand, it is not independent of the ratio of expo-
nents γ/α. However, in the case of the classical theory of
strength, γ = 1 and α = 1

2 . The energy balance criterion
yields γ = 2 and α = 1. Thus in both cases γ/α = 2.
This similarity is not coincidental, but does have physical
grounds, arising from classical fracture mechanics. Thus it
appears that the universality of the crack size distribution
in the case of exponential thresholds without lower cutoff
does have physical grounds.

It would be of interest to repeat the above treatment in
the case of a failure threshold distribution with a nonzero
lower cutoff. The resulting crack appearance probability
however is not an elementary function. It contains a hy-
pergeometric function. It has been shown, using Maxwell-
Boltzmann statistics, that in the vicinity of the atomistic
scale, strength distribution does not have a nonzero lower
cutoff [11]. However, there hardly are reasons to assume
that this would apply to mesoscopic material elements in
general.

6 Discussion

Within the dilute-crack approximation, discussing one
critical crack results as only one length approximation for
the critical crack (Eqs. (11) and (22)). This, combined
with the approximation that the critical crack is long, re-
sults as critical stress proportional to the upper limit of the
failure threshold distribution (Eqs. (10) and (21)). Fur-
thermore, having quenched disorder in the failure thresh-
olds, and the rule for stress enhancement at the crack
tip being deterministic, the dilute-crack approximation re-
sults as a deterministic approximation for the critical ap-
plied voltage. Thus the dilute-crack approximation does
not produce any strength distribution for the material,
and the results of the present study cannot be compared
with strength distributions arising from previous treat-
ments, which often have been found to be of Weibull or
double exponential form [1–3,12–18].

The dilute-crack approximation does produce a system
size effect on the critical crack length, as well as on the
critical nominal stress, and these results can be compared
with previous studies. The present study always yields the
critical crack length proportional to the logarithm of lin-
ear system size, and the critical applied voltage inversely
proportional to the square root of the critical crack length.
These features appear be rather general in the failure of
disordered materials, the exponent of the critical crack

length however depending on the load shearing geome-
try in the vicinity of failed elements [1,2,12,14,15,17–19].
It is further worth noting that the asymptotic size effect
on strength at large sizes may be logarithmic, algebraic
or nonexistent [20]. Some observations indicate that there
may be an optimum system size which yields a minimum
in failure probability [21].

The apparent universality in the crack size distribu-
tion, in the absence of lower cutoff of failure thresholds,
is a result of the dilute-crack approximation. The dilute-
crack approximation does appear as a rather effective, and
in the mind of the author, also a rather reliable tool for
discussing disordered sheet materials. Though it would be
of interest to know how crack interactions might chance
the picture. Another open question is the effect of disorder
introduced in the conductivity (stiffness) which above was
spatially invariant. Then, of course, fracture and damage
of three-dimensional bodies would be a research field of
significant practical importance.
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